1. baitap-net.pages.dev
  2. ///

Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Đề Kiểm Tra: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 1:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 2:

Bảng biến thiên trong hình vẽ là của hàm sốTrắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( {3; + \infty } \right)\).
Câu 4:

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?

Ta có: \(y = {x^3} – 3{x^2} + 3x + 5 \Rightarrow y’ = 3{x^2} – 6x + 3 \geqslant 0\,,\;\forall x \in \mathbb{R}\) và \(y’ = 0 \Leftrightarrow 3{x^2} – 6x + 3 = 0 \Leftrightarrow x = 1\)

Nên hàm số \(y = {x^3} – 3{x^2} + 3x + 5\) đồng biến trên \(\mathbb{R}\).
Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số đã cho.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 6:

Cho hàm số \(y = \frac{{2x – 3}}{{4 – x}}\). Hãy chọn khẳng định đúng trong các khẳng định sau:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 4 \right\}\).Ta có \(y = \frac{{2x – 3}}{{ – x + 4}}\)\( \Rightarrow y' = \frac{5}{{{{\left( { – x + 4} \right)}^2}}} > 0\), \(\forall x \ne 4\).Do đó hàm số hàm số đồng biến trên các khoảng \(\left( {4; + \infty } \right)\) và \(\left( { – \infty ;4} \right)\).
Câu 7:

Hàm số \(y = {x^3} – 3{x^2} + 3\) đồng biến trên khoảng

Hàm số đã cho có tập xác định là \(\mathbb{R}\).

\(y' = 3{x^2} – 6x,\,\forall x \in \mathbb{R}\)\( \Rightarrow y' > 0 \Leftrightarrow x \in \left( { – \infty \,;\,0} \right) \cup \left( {2\,;\, + \infty } \right)\).

Vậy hàm số đồng biến trên cáckhoảng \(\left( { – \infty \,;\,0} \right)\) và \(\left( {2\,;\, + \infty } \right)\). Suy ra
Câu 8:

Tìm khoảng đồng biến của hàm số: \(y = {x^4} – 6{x^2} + 8x + 1\).

Ta có : \(y' = 4{x^3} – 12x + 8\) ; \(y' = 0 \Leftrightarrow \left[ \begin{gathered} x = – 2 \hfill \\ x = 1 \hfill \\ \end{gathered} \right.\).Bảng biến thiên:Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Vậy hàm số đồng biến trên khoảng \(\left( { – 2; + \infty } \right)\).
Câu 9:

Các khoảng đồng biến của hàm số \(y = 3{x^5} – 5{x^3} + 2024\) là:

Lưu ý: Dấu của \(y'\) không đổi khi qua nghiệm kép.
Câu 10:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y = 2024 – f\left( x \right)\) đồng biến trên khoảng nào dưới đây?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Xét hàm số \(y = 2024 – f\left( x \right)\)Ta có \(y' = – f'\left( x \right)\)

\(y' > 0 \Leftrightarrow f'\left( x \right) < 0\).

Dựa vào đồ thị ta thấy trên khoảng \(\left( {0\,;1} \right)\) thì \(f'\left( x \right) < 0\).

Vậy trên khoảng \(\left( {0;1} \right)\) hàm số \(y = 2024 – f\left( x \right)\) đồng biến.

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Đáp án câu 1:
A
\(\left( {0;1} \right)\)
Đáp án câu 2:
C
\(y = \frac{{ - 2x - 4}}{{x + 1}}\).
Đáp án câu 3:
C
Hàm số đã cho đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\).
Đáp án câu 4:
C
\(y = {x^3} - 3{x^2} + 3x + 5\).
Đáp án câu 5:
D
\(\left( { - 2;0} \right)\).
Đáp án câu 6:
A
Hàm số nghịch biến trên mỗi khoảng xác định.
Đáp án câu 7:
C
\(\left( {0\,;\, + \infty } \right)\).
Đáp án câu 8:
B
\(\left( { - 2; + \infty } \right)\).
Đáp án câu 9:
A
\(\left( { - \infty ; - 1} \right)\); \(\left( {0;1} \right)\).
Đáp án câu 10:
A
\(\left( {1;2} \right)\).

Baitap.net là website chia sẻ tài liệu học tập đa dạng cho học sinh cấp 1, 2, 3, giúp hỗ trợ học tập hiệu quả với đầy đủ sách giáo khoa, sách bài tập và tài liệu tham khảo. Ngoài ra, website còn cung cấp kho sách PDF phong phú, cho phép người dùng tải xuống miễn phí nhiều đầu sách bổ ích. Với giao diện thân thiện, dễ sử dụng, Baitap.net giúp học sinh tiếp cận tài liệu nhanh chóng và tiện lợi. Mọi tài liệu đều được chọn lọc kỹ lưỡng, đảm bảo nội dung chính xác và bám sát chương trình giáo dục. Đây là nguồn tài nguyên hữu ích dành cho học sinh, giáo viên và phụ huynh trong quá trình học tập và giảng dạy.

Về chúng tôi