1. baitap-net.pages.dev
  2. ///

Đề Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 2

Đề Kiểm Tra: Đề Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 2

Câu 1:

Tập xác định \(D\) của hàm số \(y = \frac{{3x – 1}}{{3x – 2}}\) là

Hàm số xác định khi \(3x – 2 \ne 0 \Leftrightarrow 3x \ne 2 \Leftrightarrow x \ne \frac{2}{3}\). Vậy \(D = R\backslash \left\{ {\frac{2}{3}} \right\}\).
Câu 2:

Tập xác định của hàm số \(f(x) = \frac{{x + 5}}{{x – 1}} + \frac{{x – 1}}{{x + 5}}\) là

Điều kiện: \(\left\{ \begin{gathered} x – 1 \ne 0 \hfill \\ x + 5 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \ne 1 \hfill \\ x \ne – 5 \hfill \\ \end{gathered} \right.\).Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ {1; – 5} \right\}\).
Câu 3:

Tập xác định của hàm số \(y = \frac{1}{{\sqrt {3 – x} }}\)là

Điều kiện xác định \(3 – x > 0 \Leftrightarrow x < 3\).Vậy tập xác định của hàm số \(y = \frac{1}{{\sqrt {3 - x} }}\)là \(D = \left( { - \infty ;3} \right).\)
Câu 4:

Tìm tập xác định của hàm số \(y = \sqrt {x – 1} + \frac{1}{{x + 4}}\).

Điều kiện xác định của hàm số: \(\left\{ \begin{gathered} x – 1 \geqslant 0 \hfill \\ x + 4 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \geqslant 1 \hfill \\ x \ne – 4 \hfill \\ \end{gathered} \right. \Leftrightarrow x \geqslant – 1\).Suy ra tập xác định của hàm số là \(\left[ {1; + \infty } \right)\).
Câu 5:

Tập xác định của hàm số \(y = \frac{{\sqrt {5 – 2x} }}{{(x – 2)\sqrt {x – 1} }}\) là

Hàm số xác định khi: \(\left\{ \begin{gathered} 5 – 2x \geqslant 0 \hfill \\ x – 2 \ne 0 \hfill \\ x – 1 > 0 \hfill \\ \end{gathered} \right.\)\( \Leftrightarrow \) \(\left\{ \begin{gathered} x\, \leqslant \,\frac{5}{2} \hfill \\ x\, \ne \,2 \hfill \\ x > 1 \hfill \\ \end{gathered} \right.\)\( \Leftrightarrow \)\(\left\{ \begin{gathered} 1\, < \,x\, \leqslant \,\frac{5}{2} \hfill \\ x\, \ne \,2 \hfill \\ \end{gathered} \right.\)

Vậy tập xác định của hàm số là: \(D = \left( {1\,;\,\frac{5}{2}} \right]\,\backslash \,{\text{\{ }}\,2\,\} \)
Câu 6:

Cho hàm số \(f\left( x \right) = \frac{{2023x + 2024}}{{{x^2} – 2x + 21 – 2m}},\) với \(m\) là tham số. Số các giá trị nguyên dương của tham số \(m\) để hàm số \(f\left( x \right)\) xác định với mọi \(x\) thuộc \(\mathbb{R}\) là

Hàm số \(f\left( x \right)\) xác định với mọi \(x\) thuộc \(\mathbb{R}\)\( \Leftrightarrow {x^2} – 2x + 21 – 2m \ne 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow \) Phương trình \({x^2} – 2x + 21 – 2m = 0\) vô nghiệm

\( \Leftrightarrow \Delta ' = 1 – \left( {21 – 2m} \right) < 0 \Leftrightarrow m < 10.\)

Vì \(m\) là số nguyên dương nên \(m \in \left\{ {1;\;2;\;3;...;\;8;\;9} \right\}.\)

Vậy có 9 giá trị nguyên dương của \(m\) thỏa đề bài.
Câu 7:

Tìm tất cả các giá trị của \(m\)để hàm số \(y = \frac{{2x}}{{x – m + 1}}\)xác định trên khoảng \(\left( {0\,;2} \right)\)?

Hàm số \(y = \frac{{2x}}{{x – m + 1}}\)xác định khi \(x – m + 1 \ne 0 \Leftrightarrow x \ne m – 1\).Hàm số xác định trên khoảng \(\left( {0\,;2} \right)\)khi và chỉ khi \(\left[ \begin{gathered} m – 1 \leqslant 0 \hfill \\ m – 1 \geqslant 2 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} m \leqslant 1 \hfill \\ m \geqslant 3 \hfill \\ \end{gathered} \right.\).
Câu 8:

Cho hàm số có đồ thị như hình vẽ.Đề Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 2Chọn đáp án sai.

Từ đồ thị hàm số ta thấy:Hàm số nghịch biến trong các khoảng: \(\left( { – \infty ; – 1} \right)\) và \(\left( {0;1} \right)\).Hàm số đồng biến trong các khoảng: \(\left( { – 1;0} \right)\) và \(\left( {1; + \infty } \right)\).
Câu 9:

Cho hàm số \(y = {x^3} – 3x + 2\). Điểm nào sau đây thuộc đồ thị hàm số đã cho?

Thay tọa độ điểm vào hàm số ta thấy chỉ có điểm \(\left( { – 2;0} \right)\) thỏa mãn.
Câu 10:

Cho hàm số \(y = \left\{ \begin{gathered} {x^2} – 2x{\text{ }}khi{\text{ }}x \geqslant 1 \hfill \\ \frac{{5 – 2x}}{{x – 1}}{\text{ }}khi{\text{ }}x < 1 \hfill \\ \end{gathered} \right..\)Điểm nào sau đây thuộc đồ thị hàm số?

A. \(\left( {4; – 1} \right).\) Thay \(x = 4\) (nằm trong trường hợp \(x \geqslant 1\)) vào hàm số ta được \(y = {4^2} – 2.4 = 8 \ne – 1\).

Nên điểm \(\left( {4; – 1} \right)\) không thuộc đồ thị hàm số đã cho.

B. \(\left( { – 2; – 3} \right).\) Thay \(x = – 2\) (nằm trong trường hợp \(x < 1\)) vào hàm số ta được \(y = \frac{{5 - 2.\left( { - 2} \right)}}{{ - 2 - 1}} = - 3\).

Nên điểm \(\left( { - 2; - 3} \right)\) thuộc đồ thị hàm số đã cho.

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 2

Đáp án câu 1:
D
\(D = R\backslash \left\{ {\frac{2}{3}} \right\}\).
Đáp án câu 2:
D
\(D = \mathbb{R}\backslash \{ - 5;{\text{ }}1\} .\)
Đáp án câu 3:
D
\(D = \left( { - \infty ;3} \right).\)
Đáp án câu 4:
D
\(\left[ {1; + \infty } \right)\).
Đáp án câu 5:
A
\(\left( {1\,;\,\frac{5}{2}} \right]\,\backslash \,{\text{\{ }}\,2\,\} \).
Đáp án câu 6:
B
\(9.\)
Đáp án câu 7:
D
\(\left[ \begin{gathered} m \leqslant 1 \hfill \\ m \geqslant 3 \hfill \\ \end{gathered} \right.\).
Đáp án câu 8:
C
Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
Đáp án câu 9:
A
\(\left( { - 2;0} \right)\).
Đáp án câu 10:
B
\(\left( { - 2; - 3} \right).\)

Baitap.net là website chia sẻ tài liệu học tập đa dạng cho học sinh cấp 1, 2, 3, giúp hỗ trợ học tập hiệu quả với đầy đủ sách giáo khoa, sách bài tập và tài liệu tham khảo. Ngoài ra, website còn cung cấp kho sách PDF phong phú, cho phép người dùng tải xuống miễn phí nhiều đầu sách bổ ích. Với giao diện thân thiện, dễ sử dụng, Baitap.net giúp học sinh tiếp cận tài liệu nhanh chóng và tiện lợi. Mọi tài liệu đều được chọn lọc kỹ lưỡng, đảm bảo nội dung chính xác và bám sát chương trình giáo dục. Đây là nguồn tài nguyên hữu ích dành cho học sinh, giáo viên và phụ huynh trong quá trình học tập và giảng dạy.

Về chúng tôi