1. baitap-net.pages.dev
  2. ///

Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Đề Kiểm Tra: Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Câu 1:

Tập xác định của hàm số \(y = {x^2} – 2024x + 2025\) là

Hàm số là hàm đa thức nên xác định với mọi số thực \(x\).
Câu 2:

Tập xác định của hàm số \(y = \frac{{x – 3}}{{4x – 4}}\) là

Điều kiện xác định : \(4x – 4 \ne 0 \Leftrightarrow x \ne 1\)

Nên tập xác định của hàm số là : \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Câu 3:

Tập xác định của hàm số \(y = \frac{{2025}}{{{x^2} – 9}}\) là

Hàm số đã cho xác định khi \({x^2} – 9 \ne 0 \Leftrightarrow \left\{ \begin{gathered} x \ne 3 \hfill \\ x \ne – 3 \hfill \\ \end{gathered} \right.\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { – 3;3} \right\}\).
Câu 4:

Tập xác định \(D\) của hàm số \(y = \sqrt {3x – 1} \) là

Hàm số \(y = \sqrt {3x – 1} \) xác định \( \Leftrightarrow 3x – 1 \geqslant 0 \Leftrightarrow x \geqslant \frac{1}{3}\).

Vậy: \(D = \left[ {\frac{1}{3}; + \infty } \right)\).
Câu 5:

Tập xác định của hàm số \(y = \sqrt {4 – x} + \sqrt {x – 2} \) là

Điều kiện: \(\left\{ \begin{gathered} 4 – x \geqslant 0 \hfill \\ x – 2 \geqslant 0 \hfill \\ \end{gathered} \right.\) \( \Leftrightarrow \left\{ \begin{gathered} x \leqslant 4 \hfill \\ x \geqslant 2 \hfill \\ \end{gathered} \right.\) suy ra TXĐ: \(D = \left[ {2;4} \right]\).
Câu 6:

Tập xác định của hàm số \(y = \sqrt {9 – x} + \frac{x}{{\sqrt {x – 1} }}\) là \(\left( {a;b} \right]\) với \(a,b\) là các số thực. Tính tổng \(a + b\).

Điều kiện xác định: \(\left\{ {\begin{array}{*{20}{l}} {9 – x \geqslant 0} \\ {x – 1 > 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {x \leqslant 9} \\ {x > 1} \end{array}} \right.\)\( \Leftrightarrow 1 < x \leqslant 9\).

Tập xác định \(D = \left( {1;9} \right] \to a = 1,b = 9 \to a + b = 10\).
Câu 7:

Với giá trị nào của \(m\) thì hàm số \(y = \frac{{2x + 1}}{{{x^2} – 2x – 3 – m}}\) xác định trên \(\mathbb{R}\).

Hàm số \(y = \frac{{2x + 1}}{{{x^2} – 2x – 3 – m}}\) xác định trên \(\mathbb{R}\) \( \Leftrightarrow {x^2} – 2x – 3 – m \ne 0,\,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \)phương trình \({x^2} – 2x – 3 – m = 0\) vô nghiệm

\( \Leftrightarrow \) \(\Delta ' = m + 4 < 0 \Leftrightarrow m < - 4\).
Câu 8:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sauTrắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1Hàm số nghịch biến trong khoảng nào dưới đây?

Ta thấy trong khoảng \(\left( {0;1} \right)\), mũi tên có chiều đi xuống. Do đó hàm số nghịch biến trong khoảng \(\left( {0;1} \right)\).
Câu 9:

Cho hàm số có đồ thị như hình bên dưới.Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1Khẳng định nào sau đây là đúng?

Trên khoảng \(\left( {0;2} \right)\), đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Câu 10:

Cho \((P)\) có phương trình \(y = {x^2} – 2x + 4\). Điểm nào sau đây thuộc đồ thị \((P)\).

A. \(Q\left( {4;2} \right)\).Thay \(x = 4\) vào phương trình của \((P)\) ta được \(y = {4^2} – 2.2 + 4 = 8 \ne 2\)

Suy ra, \(Q \notin (P)\).

B. \(N\left( { – 3;1} \right)\).Thay \(x = – 3\) vào phương trình của \((P)\) ta được \(y = {( – 3)^2} – 2.( – 3) + 4 = 19 \ne 1\)

Suy ra, \(N \notin (P)\).

C. \(P\left( {4;0} \right)\).Thay \(x = 4\) vào phương trình của \((P)\) ta được \(y = {4^2} – 2.2 + 4 = 8 \ne 0\)

Suy ra, \(P \notin (P)\).

D. \(M\left( { – 3;19} \right)\).Thay \(x = – 3\) vào phương trình của \((P)\) ta được \(y = {( – 3)^2} – 2.( – 3) + 4 = 19\)

Suy ra, \(M \in (P)\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Đáp án câu 1:
D
\(\left( { - \infty ;\, + \infty } \right)\).
Đáp án câu 2:
A
\(\mathbb{R}\backslash \left\{ 1 \right\}\).
Đáp án câu 3:
B
\(\mathbb{R}\backslash \left\{ { - 3;3} \right\}\).
Đáp án câu 4:
C
\(D = \left[ {\frac{1}{3}; + \infty } \right)\).
Đáp án câu 5:
B
\(D = \left[ {2;4} \right]\)
Đáp án câu 6:
D
\(a + b = 10\).
Đáp án câu 7:
B
\(m < - 4\).
Đáp án câu 8:
D
\(\left( {0;1} \right)\)
Đáp án câu 9:
C
Hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\).
Đáp án câu 10:
D
\(M\left( { - 3;19} \right)\).

Baitap.net là website chia sẻ tài liệu học tập đa dạng cho học sinh cấp 1, 2, 3, giúp hỗ trợ học tập hiệu quả với đầy đủ sách giáo khoa, sách bài tập và tài liệu tham khảo. Ngoài ra, website còn cung cấp kho sách PDF phong phú, cho phép người dùng tải xuống miễn phí nhiều đầu sách bổ ích. Với giao diện thân thiện, dễ sử dụng, Baitap.net giúp học sinh tiếp cận tài liệu nhanh chóng và tiện lợi. Mọi tài liệu đều được chọn lọc kỹ lưỡng, đảm bảo nội dung chính xác và bám sát chương trình giáo dục. Đây là nguồn tài nguyên hữu ích dành cho học sinh, giáo viên và phụ huynh trong quá trình học tập và giảng dạy.

Về chúng tôi