Tìm tất cả các giá trị dương của tham số \(m\) để hàm số \(f\left( x \right) = m{x^2} – 4x – {m^2}\) luôn nghịch biến trên \(\left( { – 1;2} \right)\).
\(0 < m \leqslant 1\).
Tìm giá trị của tham số \(m\) để đỉnh \(I\) của đồ thị hàm số \(y = – {x^2} + 6x + m\) thuộc đường thẳng \(y = x + 2024\).
\(m = 2018\).
Cho parabol \((p):y = a{x^2} + bx + c\) có trục đối xứng là đường thẳng \(x = 1\). Khi đó \(4a + 2b\) bằng
\(0\).
Parabol \(y = a{x^2} + bx + c\) đi qua \(A\left( {8;0} \right)\) và có đỉnh \(I\left( {6; – 12} \right)\). Khi đó tích \(a.b.c\) bằng
\( - 10368\).
Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sauPhương trình của parabol này là
\(y = 2{x^2} - 4x - 1\).
Cho parabol \((P):y = a{x^2} + bx + c\), \(\left( {a \ne 0} \right)\) có đồ thị như hình bên dưới.Khi đó \(2a + b + 2c\) có giá trị là:
\( - 6\).
Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như bên.Khẳng định nào sau đây đúng?
\(a > 0,b < 0,c < 0.\).
Đồ thị trong hình vẽ dưới đây là của hàm số nào trong các phương án A;B;C;D sau đây?
\(y = {x^2} - 2x - 1\).
Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau:Phương trình của parabol này là
\(y = 2{x^2} - 4x - 1.\)
Giá trị lớn nhất của hàm số \(y = – 3{x^2} + 2x + 1\) trên đoạn \(\left[ {1;3} \right]\) là:
0
Kết quả:
Baitap.net là website chia sẻ tài liệu học tập đa dạng cho học sinh cấp 1, 2, 3, giúp hỗ trợ học tập hiệu quả với đầy đủ sách giáo khoa, sách bài tập và tài liệu tham khảo. Ngoài ra, website còn cung cấp kho sách PDF phong phú, cho phép người dùng tải xuống miễn phí nhiều đầu sách bổ ích. Với giao diện thân thiện, dễ sử dụng, Baitap.net giúp học sinh tiếp cận tài liệu nhanh chóng và tiện lợi. Mọi tài liệu đều được chọn lọc kỹ lưỡng, đảm bảo nội dung chính xác và bám sát chương trình giáo dục. Đây là nguồn tài nguyên hữu ích dành cho học sinh, giáo viên và phụ huynh trong quá trình học tập và giảng dạy.
Tài Liệu Toán, Tài liệu Tiếng Anh, Tài Liệu Công Dân, Tài Liệu Địa Lí, Tài Liệu Lịch Sử, Tài Liệu Sinh Học, Tài Liệu Ngữ Văn, Tài Liệu Hóa Học, Tài Liệu Vật lí.