1. baitap-net.pages.dev
  2. ///

Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Đề Kiểm Tra: Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Câu 1:

Tập hợp \(X = \left\{ {2;5} \right\}\) có bao nhiêu phần tử?

Câu 2:

Liệt kê phân tử của tập hợp \(B = \left\{ {x \in \mathbb{N}|(2{x^2} – x)({x^2} – 3x – 4) = 0} \right\}\).

Ta có: \(\left( {2{x^2} – x} \right)\left( {{x^2} – 3x – 4} \right) = 0 \Rightarrow \left[ \begin{gathered} 2{x^2} – x = 0 \hfill \\ {x^2} – 3x – 4 = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = 0 \hfill \\ x = \frac{1}{2} \hfill \\ x = – 1 \hfill \\ x = 4 \hfill \\ \end{gathered} \right.\)Mà \(x \in \mathbb{N} \Rightarrow \left[ \begin{gathered} x = 0 \hfill \\ x = 4 \hfill \\ \end{gathered} \right.\)
Câu 3:

Có bao nhiêu cách cho một tập hợp ?

Có hai cách cho một tập hợp :+) Cách \(1\) : Liệt kê .+) Cách \(2\) : Chỉ ra tính chất đặc trưng của các phần tử .
Câu 4:

Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?

Câu 5:

Tìm số phần tử của tập hợp \(A = \left\{ {x \in \mathbb{R}/\left( {x – 1} \right)\left( {x + 2} \right)\left( {{x^3} – 4x} \right) = 0} \right\}\).

\(\left( {x – 1} \right)\left( {x + 2} \right)\left( {{x^3} – 4x} \right) = 0\)\( \Leftrightarrow \left[ \begin{gathered} x – 1 = 0 \hfill \\ x + 2 = 0 \hfill \\ {x^3} – 4x = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = 1 \hfill \\ x = – 2 \hfill \\ x = 0 \hfill \\ x = 2 \hfill \\ \end{gathered} \right.\)\( \Rightarrow A = \left\{ {1; – 2;0;2} \right\}\). Vậy \(A\) có 4 phần tử.
Câu 6:

Cho tập hợp \(P\). Tìm mệnh đề sai trong các mệnh đề sau?

Câu 7:

Tập hợp nào sau đây có đúng hai tập hợp con?

C1: Công thức số tập con của tập hợp có \(n\)phần tử là \({2^n}\) nên suy ra tập \(\left\{ x \right\}\) có 1 phần tử nên có \({2^1} = 2\) tập con.C2: Liệt kê số tập con ra thì \(\left\{ x \right\}\) có hai tập con là \(\left\{ x \right\}\)và \(\left\{ \emptyset \right\}\).
Câu 8:

Cho tập hợp \(A\). Trong các mệnh đề sau, mệnh đề nào sai ?

Câu 9:

Cho tập hợp \(A = \left\{ {1;\,2;\,a} \right\}\), \(B = \left\{ {1;\,2;\,a;\,b;\,x;\,y} \right\}\). Hỏi có bao nhiêu tập hợp \(X\) thỏa \(A \subset X \subset B\)?

\(\left\{ {1;\,2;\,a} \right\},\,\left\{ {1;\,2;\,a;b} \right\}\,,\,\left\{ {1;\,2;\,a;x} \right\},\,\left\{ {1;\,2;\,a;\,y} \right\},\)\(\left\{ {1;\,2;\,a;b;x} \right\},\,\left\{ {1;\,2;\,a;b;y} \right\},\,\left\{ {1;\,2;\,a;x;y} \right\},\left\{ {1;\,2;\,a;\,b;\,x;\,y} \right\}\).
Câu 10:

Hai tập hợp nào dưới đây không bằng nhau ?

Xét tập hợp \(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},x \geqslant \frac{1}{8}} \right\}\)ta có :\(\frac{1}{{{2^k}}} \geqslant \frac{1}{8} \Leftrightarrow \frac{1}{{{2^k}}} \geqslant \frac{1}{{{2^3}}} \Leftrightarrow {2^k} \leqslant {2^3} \Leftrightarrow k \leqslant 3\), suy ra: \(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},k \leqslant 3} \right\}\)\( \Leftrightarrow A = \left\{ {\frac{1}{8};\frac{1}{4};\frac{1}{2};…} \right\}\) nên: \(A \ne B\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Đáp án câu 1:
C
\(2\).
Đáp án câu 2:
B
\(B = \left\{ {0;4} \right\}\).
Đáp án câu 3:
A
\(1\) .
Đáp án câu 4:
C
\(\left\{ {x \in R/{x^2} - 4x + 3 = 0} \right\}\).
Đáp án câu 5:
D
\(5\).
Đáp án câu 6:
D
\(P \subset P\).
Đáp án câu 7:
B
\(\left\{ {x;y;\emptyset } \right\}\).
Đáp án câu 8:
C
\(A \in A\).
Đáp án câu 9:
A
\(8\).
Đáp án câu 10:
A
\(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},x \geqslant \frac{1}{8}} \right\}\) và \(B = \left\{ {\frac{1}{2};\frac{1}{4};\frac{1}{8}} \right\}\).

Baitap.net là website chia sẻ tài liệu học tập đa dạng cho học sinh cấp 1, 2, 3, giúp hỗ trợ học tập hiệu quả với đầy đủ sách giáo khoa, sách bài tập và tài liệu tham khảo. Ngoài ra, website còn cung cấp kho sách PDF phong phú, cho phép người dùng tải xuống miễn phí nhiều đầu sách bổ ích. Với giao diện thân thiện, dễ sử dụng, Baitap.net giúp học sinh tiếp cận tài liệu nhanh chóng và tiện lợi. Mọi tài liệu đều được chọn lọc kỹ lưỡng, đảm bảo nội dung chính xác và bám sát chương trình giáo dục. Đây là nguồn tài nguyên hữu ích dành cho học sinh, giáo viên và phụ huynh trong quá trình học tập và giảng dạy.

Về chúng tôi